Posted  by  admin

Ignition Wire Transfer

Alternator High Output For Chevy one 1 Wire 105 Amp DELCO 10SI Self-Exciting 12V. Transfer Case Shift Motor. Secondary Air Injection Pump. Spark Plug Ignition. An engine tune up typically includes a set of new spark plugs and spark plug wires, also called ignition wires. Your spark plug wires transfer power from the distributor to the spark plugs. The Basic Wiring Configuration for a Typical Generator Transfer Switch: LINE (top) – The power from the Electric Utility Company – Normal Power. LOAD (center) – The Connection to the Home Electrical. Choose from a variety of products for electrical, lighting or ignition Systems for your car, truck or SUV. Keep your car running in all conditions with NAPA Canada. Buy Ignition Wire Connector at Advance Auto Parts. Home Engines & Ignition Ignition & Tune-Up Ignition Coil Components Ignition Wire Connector.

  1. 5 Wire Ignition Switch Diagram
  2. Msd Ignition Wires
  3. Ignition Coil Wire Resistance Chart
  4. How To Start A Wire Transfer
  5. Ignition Poker Wire Transfer
  6. Ignition Poker Wire Transfer
Bosch magneto circuit, 1911
Ignition casino wire transfer
Simple low-tension magneto, for a single-cylinder engine
Armature of a high-tension magneto
Section through a high-tension magneto, with distributor

An ignition magneto, or high tension magneto, is a magneto that provides current for the ignition system of a spark-ignition engine, such as a petrol engine. It produces pulses of high voltage for the spark plugs. The older term tension means voltage.[1]

The use of ignition magnetos is now confined mainly to engines where there is no other available electrical supply, for example in lawnmowers and chainsaws. It is also widely used in aviation piston engines even though an electrical supply is usually available. In this case, the magneto's self-powered operation is considered to offer increased reliability; in theory, the magneto should continue operation as long as the engine is turning.

History[edit]

Firing the gap of a spark plug, particularly in the combustion chamber of a high-compression engine, requires a greater voltage (or higher tension) than can be achieved by a simple magneto.[2] The high-tension magneto combines an alternating current magneto generator and a transformer.[2] A high current at low voltage is generated by the magneto, then transformed to a high voltage (even though this is now a far smaller current) by the transformer.[2]

The first person to develop the idea of a high-tension magneto was Andre Boudeville, but his design omitted a condenser (capacitor); Frederick Richard Simms in partnership with Robert Bosch were the first to develop a practical high-tension magneto.[3]

Magneto ignition was introduced on the 1899 DaimlerPhönix. This was followed by Benz, Mors, Turcat-Mery, and Nesseldorf,[4] and soon was used on most cars up until about 1918 in both low voltage (voltage for secondary coils to fire the spark plugs) and high voltage magnetos (to fire the spark plug directly, similar to coil ignitions, introduced by Bosch in 1903).[4]

Operation[edit]

In the type known as a shuttle magneto, the engine rotates a coil of wire between the poles of a magnet. In the inductor magneto, the magnet is rotated and the coil remains stationary.

As the magnet moves with respect to the coil, the magnetic flux linkage of the coil changes. This induces an EMF in the coil, which in turn causes a current to flow. One or more times per revolution, just as the magnet pole moves away from the coil and the magnetic flux begins to decrease, a cam opens the contact breaker (called “the points” in reference to the two points of a circuit breaker) and interrupts the current. This causes the electromagnetic field in the primary coil to collapse rapidly. As the field collapses rapidly there is a large voltage induced (as described by Faraday's Law) across the primary coil.

As the points begin to open, point spacing is initially such that the voltage across the primary coil would arc across the points. A capacitor is placed across the points which absorbs the energy stored in the leakage inductance of the primary coil, and slows the rise time of the primary winding voltage to allow the points to open fully.[5] The capacitor's function is similar to that of a snubber as found in a flyback converter.

A second coil, with many more turns than the primary, is wound on the same iron core to form an electrical transformer. The ratio of turns in the secondary winding to the number of turns in the primary winding, is called the turns ratio. Voltage across the primary coil results in a proportional voltage being induced across the secondary winding of the coil. The turns ratio between the primary and secondary coil is selected so that the voltage across the secondary reaches a very high value, enough to arc across the gap of the spark plug. As the voltage of the primary winding rises to several hundred volts,[5][6] the voltage on the secondary winding rises to several tens of thousands of volts, since the secondary winding typically has 100 times as many turns as the primary winding.[5]

The capacitor and the coil together form a resonant circuit which allows the energy to oscillate from the capacitor to the coil and back again. Due to the inevitable losses in the system, this oscillation decays fairly rapidly. This dissipates the energy that was stored in the condenser in time for the next closure of the points, leaving the condenser discharged and ready to repeat the cycle.

On more advanced magnetos the cam ring can be rotated by an external linkage to alter the ignition timing.

In a modern installation, the magneto only has a single low tension winding which is connected to an external ignition coil which not only has a low tension winding, but also a secondary winding of many thousands of turns to deliver the high voltage required for the spark plug(s). Such a system is known as an 'energy transfer' ignition system. Initially this was done because it was easier to provide good insulation for the secondary winding of an external coil than it was in a coil buried in the construction of the magneto (early magnetos had the coil assembly externally to the rotating parts to make them easier to insulate—at the expense of efficiency). In more modern times, insulation materials have improved to the point where constructing self-contained magnetos is relatively easy, but energy transfer systems are still used where the ultimate in reliability is required such as in aviation engines.

Aviation[edit]

Because it requires no battery or other source of electrical energy, the magneto is a compact and reliable self-contained ignition system, which is why it remains in use in many general aviation applications.

Since the beginning of World War I in 1914, magneto-equipped aircraft engines have typically been dual-plugged, whereby each cylinder has two spark plugs, with each plug having a separate magneto system. Dual plugs provide both redundancy should a magneto fail, and better engine performance (through enhanced combustion). Twin sparks provide two flame fronts within the cylinder, these two flame fronts decreasing the time needed for the fuel charge to burn. As the size of the combustion chamber determines the time to burn the fuel charge, dual ignition was especially important for the large-boreaircraft engines around World War II where it was necessary to combust the entire fuel mixture in a shorter time than a single plug could provide, in order to build peak cylinder pressure at the rpm desired.

Impulse coupling[edit]

Because the magneto has low voltage output at low speed, starting an engine is more difficult.[7] Therefore, some magnetos have an impulse coupling, a springlike mechanical linkage between the engine and magneto drive shaft which 'winds up' and 'lets go' at the proper moment for spinning the magneto shaft. The impulse coupling uses a spring, a hub cam with flyweights, and a shell.[7] The hub of the magneto rotates while the drive shaft is held stationary, and the spring tension builds up. When the magneto is supposed to fire, the flyweights are released by the action of the body contacting the trigger ramp. This allows the spring to unwind giving the rotating magnet a rapid rotation and letting the magneto spin at such a speed to produce a spark.[7]

Automobile[edit]

Some aviation engines as well as some early luxury cars have had dual-plugged systems with one set of plugs fired by a magneto, and the other set wired to a coil, dynamo, and battery circuit. This was often done to ease engine starting, as larger engines may be too difficult to crank at sufficient speed to operate a magneto, even with an impulse coupling. As the reliability of battery ignition systems improved, the magneto fell out of favour for general automotive use, but may still be found in sport or racing engines.[8][9]

See also[edit]

References[edit]

Wikimedia Commons has media related to Magnetos (ignition).
  1. ^Selimo Romeo Bottone (1907). Magnetos for Automobilists, how Made and how Used: A Handbook of Practical Instruction in the Manufacture and Adaptation of the Magneto to the Needs of the Motorist. C. Lockwood and son.
  2. ^ abcCauldwell, O. (1941). Aero Engines: for Pilots and Ground Engineers. Pitman. p. 88.
  3. ^Kohli, P.L. (1993). Automotive Electrical Equipment. Tata McGraw-Hill. ISBN0-07-460216-0.
  4. ^ abG.N. Georgano, G.N. (1985). Cars: Early and Vintage, 1886-1930. London: Grange-Universal.
  5. ^ abc'Archived copy'. Archived from the original on 2015-09-18. Retrieved 2016-06-21.CS1 maint: archived copy as title (link)
  6. ^'Capacitors in Ignition Systems'. www.smokstak.com. Archived from the original on 9 July 2017. Retrieved 6 May 2018.
  7. ^ abcKroes, Michael (1995). Aircraft Powerplants. New York: Glencoe. p. 180.
  8. ^Munday, Frank (2006). Custom Auto Electrickery: How to Work with and Understand Auto Electrical Systems. MBI Publishing Company. p. 59. ISBN0-949398-35-7.
  9. ^Emanuel, Dave (1996). Small-block Chevy performance: modifications and dyno-tested combinations for high performance street and racing use. Penguin. p. 122. ISBN1-55788-253-3.

5 Wire Ignition Switch Diagram

Retrieved from 'https://en.wikipedia.org/w/index.php?title=Ignition_magneto&oldid=995070963'

Msd Ignition Wires

CARBON (SUPPRESSION) CONDUCTORS

Carbon conductors were used in original equipment ignition wires by most vehicle manufacturers, and still in the majority of stock replacement wires. This style of ignition wire is cheap to manufacture and generally provides good suppression for both RFI (radio frequency interference) and EMI (electromagnetic interference). Conductor usually consists of a substrate of fiberglass and/or Kevlar over which high-resistance conductive latex or silicone is coated, and functions by reducing spark current (by resistance) to provide suppression a job it does well while the conductor lasts. Vehicle manufacturers always treated ignition wires as service items to be replaced regularly, and limited life was never an issue. This type of conductor quickly fails (burns out) if a high-powered aftermarket ignition system is used.

EMI (electromagnetic interference)

EMI from spark plug wires can cause erroneous signals to be sent to engine management systems and other on-board electronic devices used on both racing and production vehicles in the same manner as RFI (radio frequency interference) can cause unwanted signals to be heard on a radio receiver. Engine running problems ranging from intermittent misses to a dramatic loss of power can result when engine management computers receive signals from sensors that have been altered by EMI emitted from spark plug wires. This problem is most noticeable on 1990's onward production vehicles used for commuting where virtually every function of the vehicle's drive train is managed by a computer. For many reasons, the effect of EMI on engine management computers is never predicable, and problems do become worse on aging production vehicles as sensors, connectors and wiring deteriorate and corrosion occurs. The problem is often exacerbated by replacing the original ignition system with a high-output system.

SOLID CORE CONDUCTOR WIRES

Solid metal (copper, tin-plated copper and/or stainless steel) conductor wires are still used in racing on carbureted engines, but can cause all sorts of running problems if used on vehicles with electronic ignition, fuel injection and engine management systems, particularly if vehicle is driven on the street — and damage to some original equipment and aftermarket electronic ignition and engine management systems can occur. Solid metal conductor wires cannot be suppressed to overcome EMI or RFI without the addition of current-reducing resistors at both ends of wires.

'LOW-RESISTANCE' SPIRAL WIRES

By far the most popular conductor used in ignition wires destined for race and performance street engines are spiral conductors (a.k.a. mag, pro, super, spiral, monel, heli, energy, ferro, twin core etc.). Spiral conductors are constructed by winding fine wire around a core. Almost all manufacturers use constructions which reduce production costs in an endeavor to offer ignition component marketers and mass-merchandisers cheaper prices than those of their competitors.

In the USA in particular, most marketers of performance parts selling their products through mass-merchandisers and speed shops include a variety of very effective high-output ignition systems together with a branded not-so-effective ignition wire line using a spiral conductor. Most perpetually try to out-do their competitors by offering spiral conductor ignition wires with the lowest electrical resistance. Some publish results which show their wires are superior to a competitor's wires which use identical cable (on which another brand name is printed). The published 'low' resistance (per foot) is measured with a test ohmmeter's 1 volt direct current (DC) passing through the entire length of the fine wire used for the spiral conductor.

'Low-resistance' conductorsare an easy sell, as most people associate all ignition wire conductors with original equipment and replacement ignition wire carbon conductors (which progressively fail as a result of microscopic carbon granules burning away and thus reducing the spark energy to the spark plugs) and with solid wire zero-resistance conductors that were used by racers with no need for suppression. Consumers are easily led into believing that if a spiral conductor's resistance is almost zero, its performance must be similar to that of a solid metal conductor all race cars once used. HOWEVER, NOTHING IS FURTHER FROM THE TRUTH!

What is not generally understood (or is ignored) is that as a result of the laws of electricity, the potential 45,000 plus volts (with alternating current characteristics) from the ignition coil (a pulse type transformer) does not flow through the entire length of fine wire used for a spiral conductor like the 1 volt DC voltage from a test ohmmeter, but flows in a magnetic field surrounding the outermost surface of the spiral windings (skin effect). The same skin effect applies equally to the same pulsating flow of current passing through carbon and solid metal conductors.

A spiral conductor with a low electrical resistance measured by an ohmmeter indicates, in reality, nothing other than less of the expensive fine wire is used for the conductor windings a construction which cannot achieve a clean and efficient current flow through the magnetic field surrounding the windings, resulting in poor suppression for RFI and EMI.

Of course, ignition wire manufacturers save a considerable amount in manufacturing costs by using less fine wire, less exotic winding machinery and less expertise to make low-resistance spiral conductors. As an incentive, they find a lucrative market amongst performance parts marketers who advertise their branded ignition wires as having 'low-resistance' conductors, despite the fact that such 'low-resistance' contributes nothing to make spiral ignition wires perform better, and both RFI and EMI suppression are compromised.

In recent years, most ignition wire manufacturers, to temporarily improve their spiral conductor's suppression, have resorted to coating excessively spaced spiral windings, most of which are crudely wound around strands of fiberglass or Kevlar, with a heavy layer of high-resistance carbon impregnated conductive latex or silicone compound. This type of construction hides the conductive coating's high resistance when the overall conductor is measured with a test ohmmeter, which only measures the lower resistance of the sparse spirally wound wire (the path of least resistance) under the conductive coating and ignores the high resistance of the outermost conductive coating in which the spark energy actually travels. The conductive coating is rarely shown or mentioned in advertisement illustrations.

The suppression achieved by this practice of coating the windings is only temporary, as the spark current is forced to travel through the outermost high-resistance conductive coating in the same manner the spark current travels through the outermost high-resistance conductive coating of a carbon conductor used in most original equipment and stock replacement wires.


In effect, (when new) a coated 'low-resistance' spiral conductor's true performance is identical to that of a high-resistance carbon conductor.

Unfortunately, and particularly with the use of high-output ignitions, the outermost high-resistance conductive coating over spiral windings acting as the conductor will fail from burn out in the same manner as carbon conductors, and although in most cases, the spiral conductor will not cease to conduct like a high-resistance carbon conductor, any RFI or EMI suppression will be lost as a consequence of the coating burning out. In an attempt to improve reliability, some OE wires contained carbon conductors over which high resistance wire is sparsely wound and covered in a latex or silicone conductive coating.The worst interference will come from the so-called 'super conductors' that are wound with copper (alloy) wire.

However, despite the shortcomings of 'low-resistance' spiral conductor ignition wires, these wires work satisfactorily on older production vehicles and race vehicles that do not rely on electronic engine management systems, or use on-board electronics effected by EMI — although with the lowest-resistance conductor wires, don't expect much RFI suppression on the AM band in poor reception areas.

Some Japanese and European original equipment and replacement ignition wires do have spiral conductors that provide good suppression, and usually none of these wires are promoted as having low-resistance conductors. However, some have proven unsuitable for competition use when used with high-output ignition systems, as their conductors and pin-type terminations can be fragile and may not last as long as conventional conductor fold-over terminations.

To be effective in carrying the full output from the ignition system and suppressing RFI and EMI in particular, spiral conductors need windings that are microscopically close to one another and precisely spaced and free from conductive coatings. To be more effective, the windings need to be wound over a core of magnetic material — a method too costly for wires sold through mass-merchandisers and most speed shops who purchase only the cheapest (to them) and most heavily promoted products.

Claims of Horsepower Gain

Every brand of spiral conductor ignition wires will perform the function of conducting coil output to the spark plugs, but NONE, despite the claims made in advertisements and other promotional literature, will increase horsepower. Independent tests, performed when there was a frenzy of unsubstantiated claims of horsepower increases from spark plug wires, including a test performed by Circle TrackMagazine (see May, 1996 issue) in the USA, show thatNO'low-resistance' ignition wires for which a horsepower increase is claimed do in fact increase horsepower - the test also included comparisons with solid metal and carbon conductor ignition wires.

Transfer

'CAPACITOR' EFFECT WIRESwith grounded metal braiding over jacket

The most notable of exaggerated claims for ignition wires are made by Nology, a manufacturer of ignition wires promoted as 'the only spark plug wires with built-in capacitor.' Nology's 'HotWires' consist of unsuppressed solid metal or spiral conductor ignition wires over which braided metal sleeves are partially fitted. The braided metal sleeves are grounded via straps formed from part of the braiding. Insulating covers are fitted over the braided metal sleeves. These wires are well constructed. For whatever reason, Nology specifies that non-resistor spark plugs need to be used with their 'HotWires.' In a demonstration, the use of resistor plugs with 'HotWires' will nullify the visual effect of the brighter spark.

Ignition wires with grounded braided metal sleeves over the cable have come and gone all over the world for (at least) the last 40 years, and similar wires were used over 20 years ago by a few car makers to solve cross-firing problems on early fuel injected engines and RFI problems on fiberglass bodied cars only to find other problems were created. The Circle Track Magazine (USA, May, 1996 issue) testshowed Nology 'HotWires' produced no additional horsepower (the test actually showed a 10 horsepower decrease when compared to stock carbon conductor wires).

The perceived effect a brighter spark, conducted by an ignition wire, encased or partially encased in a braided metal sleeve (shield) grounded to the engine, jumping across a huge free-air gap (which bears no relationship to the spark needed to fire the variable air/fuel mixture under pressure in a combustion chamber) is continually being re-discovered and cleverly demonstrated by marketers who convince themselves there's monetary value in such a bright spark, and all sorts of wild, completely un-provable claims are made for this phenomena.

Like many in the past, Nology cleverly demonstrates a brighter free-air spark containing useless flash-over created by the crude 'capacitor' (effect) of this style of wire. In reality, the bright spark has no more useful energy to fire a variable compressed air/fuel mixture than the clean spark you would see in a similar demonstration using any good carbon conductor wire. What is happening in such a demonstration is the coil output is being unnecessarily boosted to additionally supply spark energy that is induced (and wasted) into the grounded braided metal sleeve around the ignition wire's jacket. To test the validity of this statement, ask the Nology demonstrator to disconnect the ground strap and observe just how much energy is sparking to ground.

Claims by Nology of their 'HotWires' creating sparks that are '300 times more powerful,' reaching temperatures of '100,000 to 150,000 degrees F' (more than enough to melt spark plug electrodes), spark durations of '4 billionths of a second' (spark duration is controlled by the ignition system itself) and currents of '1,000 amperes' magically evolving in 'capacitors' allegedly 'built-in' to the ignition wires are as ridiculous as the data and the depiction of sparks in photographs used in advertising material and the price asked for these wires! Most stock ignition primaries are regulated to 6 amperes and the most powerful race ignition to no more than 40 amperes at 12,000 RPM.

It is common knowledge amongst automotive electrical engineers that it is unwise to use ignition wires fitted with grounded braided metal sleeves fitted over ignition cable jackets on an automobile engine. This type of ignition wires forces its cable jackets to become an unsuitable dielectric for a crude capacitor (effect) between the conductor and the braided metal sleeves. While the wires function normally when first fitted, the cable jackets soon break down as a dielectric, and progressively more spark energy is induced from the conductors (though the cable jackets) into the grounded metal sleeves, causing the ignition coil to unnecessarily output more energy to fire both the spark plug gaps and the additional energy lost via the braided metal sleeves. Often this situation leads to ignition coil and control unit overload failures. It should be noted that it is dangerous to use this style of wires if not grounded to the engine with grounding straps, as the outside of the braided cables will be alive with thousands of volts wanting to ground-out to anything (or anybody) nearby.

Unless you are prepared to accept poorly suppressed ignition wires that fail sooner than any other type of ignition wires and stretch your ignition system to the limit, and have an engine with no electronic management system and/or exhaust emission controls, it's best not to be influenced by the exaggerated claims, and some vested-interest journalists', resellers' and installers' perception an engine has more power after Nology wires are fitted. Often, after replacing deteriorated wires, any new ignition wires make an engine run better.

OTHER DEVICES CLAIMING TO INCREASE SPARKS:

Never be fooled by any device that is fitted between the ignition coil and the distributor, and/or distributor and the spark plugs (sometimes in place of ignition wires) for which claims of increased power, multiple sparks, and better fuel economy are made. These devices have come and gone over the last 50 years, and usually consists of a sealed container in which the spark is forced to jump an additional gap or is partially induced to ground on its way to the spark plug gap. These devices can also be cleverly demonstrated to produce sparks the human eye perceives as being 'more powerful.' The only 'increase' a gullible consumer can expect from these devices is an undesirable increase in load on their vehicle's ignition system.

SUMMING UP

All internal combustion engines rely on an ignition system and an engine that is required to produce more horsepower and needs to operate at higher-than-production-engine RPM needs a more powerful ignition system to achieve the extra horsepower and higher RPM.

Original (stock) equipment inductive ignition systems with distributors, and direct ignition systems that eliminate the distributor by controlling the ignition system with a computer, are designed to output spark energy moderately in excess of what is needed to fire spark plug gaps under normal operating conditions, and to control timing and spark duration to improve the engine's ability to control exhaust emissions, as well as ensuring the engine is not overstressed during the vehicle's warranty period.

Transfer

Capacitor discharge ignitions(CDI) such as those from Accel, Crane, Holley, Jacobs, Mallory, MSD and others create sparks that are compressed (and intensified) into shorter duration and are designed to additionally produce the extra spark energy needed by race and modified street engines that will reach higher RPM than stock engines and use fuels more difficult to fire than pump gasoline (petrol). Most CDI ignitions incorporate multi-spark circuits to enable the engine to run smoother under 3,000 RPM.

A High-output inductive ignition system is probably more appropriate than a CDI ignition system for most late model production engines (modified or not) because this type of ignition provides the longer duration spark needed by these engines. Basic high-output inductive ignition systems are currently available in the aftermarket from at least Accel, Crane, Holley, MSD, and a menu driven direct ignition system is a available from Electromotive.

Often, on production vehicles used on the street, replacing a tired ignition coil with a higher-output ignition coil from Accel, Crane, Jacobs, Mallory, Moroso, MSD, Nology, etc, can improve ignition performance, particularly under load and at higher RPM.

Electrical devices, including SPARK PLUGS, use only the electrical energy necessary to perform the function for which such devices are designed. IGNITION WIRES are nothing other than conductors, and whereas an ignition wire's inefficient or failing conductor or insulating jacket (particularly a jacket inside grounded metal shielding) can reduce the flow of electricity to the spark plug, an ignition wire that allegedly generates an 'increase' in spark energy will have no effect on the spark jumping across the spark plug gap, as the energy consumed at the spark plug gap won't be any more than what is needed to jump the gap (e.g. a 25 watt light bulb won't use any more energy or produce any more light if it's screwed into a socket wired to supply current to a 100,000 watt light bulb).

Although most new ignition wires will perform the function of conducting coil output to the spark plug, what is important to sophisticated race engine preparers and owners of production vehicles with exhaust emission controls is EMI suppression. All electronic devices can be effected by EMI emitted from ignition wires, and the problem is often exacerbated by installing a high-output ignition system. As production vehicles age, engine management sensors and wiring deteriorate and become more susceptible to EMI radiating from improperly suppressed ignition wires. To be truly effective, ignition wires need to be EMI suppressed for a reasonable time, while having the ability to maintain good conductance without overloading other ignition system components.

Engine tuners should also take into account that most stock engines and some hi-tech aftermarket engine management systems use resistance in ignition wires to sense additional information needed by the computer.

MAGNECOR RACE WIRES PROVIDE EFFECTIVE
AND PERMANENT EMI SUPPRESSION

Since 1987, Magnecor has recognized that ignition wires capable of conducting the extreme energy output from ignitions available from Accel, Crane, Electromotive, Jacobs, Mallory, MSD and others, all of which are used on engines controlled by electronic engine management systems, need effective and permanent EMI suppression to avoid interference to vehicle electronics.

Ignition Coil Wire Resistance Chart

Magnecor Race Wires completely eliminate the need to resort to short-lived carbon conductor ignition wires to overcome the problems caused by EMI on race and performance vehicle electronics from improperly suppressed 'low-resistance' spiral conductor ignition wires (with or without conductive coatings over conductor windings). Magnecor Race Wires are also extensively used on both stock and modified production vehicles which need to maintain exhaust emissions within the legal limit.

Unlike its competitors, some of whom have chosen to market 'low-resistance' imitations of Magnecor Race Wires, Magnecor does not make any claim that their current KV85 Competition (8.5mm) and R-100 Racing (10mm) Race Wires have 'low-resistance' conductors, nor do the conductors need 'low-resistance' for any practical reason. Magnecor does not claim its Race Wires increase horsepower, and any horsepower gained by the use of Magnecor Race Wires results entirely from the ability of the wires to maintain full conductance and suppress EMI that previously robbed the engine of horsepower.

How To Start A Wire Transfer

Magnecor Race Wires' 2.5mm Metallic Inductive Suppressed Conductors are designed to carry the full output from all race ignitions, and are exclusively manufactured in Magnecor's specialized facilities with precision machinery and equipment, and include microscopically close spiral windings wound over insulated ferromagnetic cores. No conductive coatings are used over the spiral windings. Magnecor Race Wires' conductors are jacketed entirely with the highest temperature aerospace grade silicone rubber to resist the extreme temperatures generated by race engines.

Since first introduced, progressive versions of Magnecor Race Wires have been consistently used by leading contenders all over the world, including those competing in SCCA, NASCAR, IMSA, NHRA and club events in the USA. To date, Magnecor USA has not sponsored any particular racer to promote the use of its ignition wires in competition events. All racers using Magnecor Race Wires do so to ensure their engines perform efficiently and without the risk of EMI from ignition wires ruining the enormous effort and expense necessary to prepare and tune engines for competition.

Ignition Poker Wire Transfer

For over 30 years, Magnecor has also offered progressive versions of its 7mm and 8mm ELECTROSPORT ignition cables for carburetor, mechanical and electronic fuel injected engines as well as more recent electronic engine management control and performance ignition systems. These wires provide RFI and EMI suppression similar to the very best offered by Magnecor's competitors in the performance aftermarket (except Magnecor wires feature larger capacity conductors, and far superior heat resistant jackets). Prices are generally comparable to products sold through speed shops and mass-merchandisers.

Ignition Poker Wire Transfer

This above document has been prepared by Magnecor to answer questions asked every day by both resellers and consumers. The information contained is also based, in part, on what has been conveyed to Magnecor's staff by racing and street engine tuners and vehicle owners in respect of their experiences with the majority of brand name ignition wires before and after they used Magnecor Wires.